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Diffusion and correlations in lattice-gas automata

David Hanon* and Jean Pierre Boon†

Center for Nonlinear Phenomena and Complex Systems, Universite´ Libre de Bruxelles, Campus Plaine, Code Postal 231,
1050 Bruxelles, Belgium

~Received 17 March 1997!

We present an analysis of diffusion in terms of the spontaneous density fluctuations in a nonthermal
two-species fluid modeled by a lattice-gas automaton. The power spectrum of the density-correlation function
is computed with statistical-mechanical methods, analytically in the hydrodynamic limit, and numerically from
a Boltzmann expression for shorter time and space scales. In particular, we define an observable—the weighted
difference of the species densities—whose fluctuation correlations yield the diffusive mode independently of
the other modes, so that the corresponding power spectrum provides a measure of diffusion dynamics solely.
Automaton simulations are performed to obtain measurements of the spectral density over the complete range
of wavelengths~from the microscopic scale to the macroscopic scale of the automaton universe!. Comparison
of the theoretical results with the numerical experiments data yields the following results:~i! the spectral
functions of the lattice-gas fluctuations are in accordance with those of a classical ‘‘nonthermal’’ fluid;~ii ! the
Landau-Placzek theory, obtained as the hydrodynamic limit of the Boltzmann theory, describes the spectra
correctly in the long wavelength limit; and~iii ! at shorter wavelengths and at moderate densities the complete
Boltzmann theory provides good agreement with the simulation data. These results offer convincing validation
of lattice-gas automata as a microscopic approach to diffusion phenomena in fluid systems.
@S1063-651X~97!05811-X#

PACS number~s!: 05.20.Dd, 05.50.1q, 05.60.1w
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I. INTRODUCTION

Frisch, Hasslacher, and Pomeau~FHP! pioneered a
lattice-gas automaton as a microscopic model for inco
pressible fluids obeying the Navier-Stokes equation in t
dimensions@1#. The FHP model was subsequently gener
ized to study diffusive phenomena in binary fluids usi
‘‘macroscopic’’ experiments@2–4#. Typically the observer
would be interested in the evolution of the density profile
‘‘red’’ particles in a system composed of red and ‘‘blue
particles, where the color is a passive property used to
tinguish species which otherwise do not differ from one a
other~it is necessary that they do in other circumstances@5#!.
The diffusion coefficient is then evaluated by fitting the ‘‘e
perimental’’ profile to the solution of the diffusion equatio
subject to the appropriate boundary conditions@3,4# .

Because the FHP lattice gas lacks an independent c
sional invariant for energy, it is not suited for modeling the
mal fluids. An appropriate generalization was realized by
construction of the model proposed by Grosfils, Boon, a
Lallemand ~GBL! @6#. Their study was motivated by th
analysis of the correlations of spontaneous fluctuations
lattice-gas automata~LGA! in order to find whether the fluc
tuations power spectrum would be in accordance with th
observed in actual fluids. Indeed the dynamical struct
factor—the power spectrum of the density fluctuations c
relation function—gains its importance by providing insig
to the dynamical behavior of the fluid@7#, and the LGA was
found to exhibit correct properties at global equilibrium: t
spectra obtained by simulations of the GBL model pres
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the same characteristics as those obtained from neutron-
light-scattering experiments in real fluids. In particular,
the hydrodynamic limit, one observes two shifted Brillou
peaks~corresponding to the propagation of sound waves
their damping! and a central Rayleigh peak~corresponding
to the diffusivity of entropy fluctuations as a consequence
energy conservation!. The GBL model was subsequent
analyzed in detail by Grosfilset al. @8#.

The mixture of two real fluids exhibits a power spectru
in which the central peak is not a simple Lorentzian, even
the long-wavelength limit@7#. It has a spectral structur
where it is difficult to separate the contributions from e
tropy fluctuations and from concentration fluctuations wh
are not decoupled in general~unless one of the two compo
nents is in trace amounts, in which case the two modes
be identified as they produce two independent cen
Lorentzians!.

From the above considerations the idea emerged to
lyze and measure the fluctuation correlations in a nonther
two-species LGA fluid~in which the Rayleigh peak is ab
sent! in order to study diffusion dynamics from a micro
scopic approach. In Sec. II we present the model used for
numerical simulations. Section III discusses the lattice Bo
zmann theory for the analysis of the dynamical structure f
tor. The analytical results are developed in the hydrodyna
limit in Sec. IV, and are found to be in full agreement wi
the Landau-Placzek theory. In Sec. V we examine the
ferent wavelength domains in terms of the Boltzmann pro
gator eigenvalues, and we present qualitative and quan
tive analyses of the theoretical results in comparison with
simulation data. The FHP spurious invariant is identifie
and its effects are shown to be unimportant when the LGA
properly implemented. We conclude with some commen
6331 © 1997 The American Physical Society
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II. MODEL

The particles have unitary mass with no spatial extens
and occupy the nodes of a triangular lattice with hexago
symmetry. A particle can move along any of the six latti
directions~with unit velocity modulus! to one of the neares
sites or be at rest in its initial state~with zero velocity modu-
lus!. Particles interact via instantaneous local collisio
which redistribute mass and momentum among the chan
of each node at every time step according to mass and
mentum conservation. In a two-species system, particles
tagged either as red or blue, and their color is redistribu
randomly during the collisions independently of the ma
redistribution; color is also conserved by the dynamics. T
state of a node is given in terms of channel occupations. H
we use a description assigning a color to the channel. S
there are seven distinct velocities and two colors~one for
each species!, each node has seven pairs of channels.
exclusion principle is applied such that a pair of chann
cannot be occupied by more than one particle~either red or
blue! at any given time@9#. A corollary is that the equilib-
rium distribution takes the form of a Fermi-Dirac distributio
@10#. The present formulation yields a convenient specifi
tion of the state of a node as a 14-bit word.

III. BOLTZMANN FORMALISM

The red mass densityr red(r,t … is the number of red par
ticles at noder at time t, and the fluctuationsdr red(r ,t) are
defined in terms of the red channel occupationsni
( i P$1, . . . ,b%, with 2b the total number of channels pe
node!,

dr red~r ,t !5(
i 51

b

dni~r ,t !5(
i 51

b

@ni~r ,t !2^ni~r ,t !&#,

~3.1!

where^& denotes the equilibrium ensemble average; in ba
equilibrium

^ni~r ,t !&

[ f i

5H f u for i 51, . . . ,b ~red channels!

f ~12u! for i 5b11, . . . ,2b ~blue channels!,
~3.2!

with f the average density per pair of channels, andu the
concentration of red particles. Note that

(
i 51

2b

^ni~r ,t !&5b fu1b f~12u!5r red1rblue5r, ~3.3!

which defines the respective average densities per node
The ‘‘red mass’’ dynamic structure factorSred(k,v), de-

fined as the space and time Fourier transform of the
Hove correlation function

Gred~r ,t !5^dr red~r ,t !dr red~0,0!&, ~3.4!

is given by
n,
al

s
ls
o-
re
d
s
e
re
ce

n
ls

-
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n

r redSred~k,v!5 (
rPL

(
t52`

`

e2 ivt2 ik•rGred~r ,utu! ~3.5!

5
1

V (
t52`

`

e2 ivt^dr red~k,utu!dr red* ~k,0!&, ~3.6!

where dr red(k,t) is the spatial Fourier transform o
dr red(r ,t), and V is the total number of nodes, also inte
preted as the volume of the lattice universe~here the latticeL
is finite and has periodic boundary conditions!. Sred(k,v) is
also expressed in terms of the kinetic propagator@8# defined
by

G i j ~k,t !k j5^dni~k,t !dnj* ~k,0!&, i , j 5 1, . . . ,b,
~3.7!

wheredni(k,t) is the spatial Fourier transform ofdni(r ,t),
and k j5 f j (12 f j ). Using Eq.~3.7!, we write the dynamic
structure factor~3.5! as

r redSred~k,v!5 (
t52`

`

e2 ivt(
i 51

b

(
j 51

b

G i j ~k,t !k j , ~3.8!

and the static structure factor~the Fourier transform of the
equal-time van Hove function! as

r redSred~k!5(
i 51

b

(
j 51

b

G i j ~k,0!k j ~3.9!

5(
i 51

b

(
j 51

b

d i j k j5(
j 51

b

k j

~3.10!

or

Sred~k!512 f u. ~3.11!

We now evaluate the kinetic propagator in the Bol
mann approximation@11#. The lattice gas equation for th
single-particle distribution fi(r ,t) reads@12#

f i~r1ci ,t11!5 f i~r ,t !1D~$nj%!. ~3.12!

HereD($ni%) is the collision term, which is expanded aroun
the stationary equilibrium distribution̂ni& to yield

D~$^ni&1dni%!5(
j 51

2b

V i j dnj1(
j ,k

O~dnjdnk!,

~3.13!

where we have used the propertyD($^ni&%)50 which fol-
lows from mass conservation. The explicit form ofV i j is
given in terms of the transition matrixA(s→s8) between
pre- and post-collisional statess ands8, respectively,

V i j 5 (
$s,s8%

A~s→s8!~si82si !sj )
k51

b
^nk&

sk^12nk&
12sk

^nj&^12nj&
.

~3.14!

This result is obtained with the assumption that particles
different channels of the same node are uncorrelated be
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56 6333DIFFUSION AND CORRELATIONS IN LATTICE-GAS . . .
collision ~Boltzmann ansatz!, i.e., by factorizing the average
^ninj& ( iÞ j ). Combining Eqs.~3.12! and~3.13!, we obtain
the linearized Boltzmann equation, which reads, ink space,

dni~k,t11!5(
j 51

2b

e2 ik•ci~d i j 1V i j !dnj~k,t !. ~3.15!

Equation~3.15! is straightforwardly solved by iteration; in
serting its solution into Eq.~3.7!, yields

G i j ~k,t !k j5@e2 ik•c
•~d1V!# i j

t k j ~ t>0!. ~3.16!

Here @e2 ik•c# j l 5d j l e
2 ik•cj is a diagonal matrix. From Eqs

~3.8! and ~3.16! we obtain

r redSred~k,v![2ReF red~k,v!, ~3.17!

F red~k,v!5(
i 51

b

(
j 51

b F 1

eiv1 ik•c2d1V
1

1

2G
i j

k j ,

~3.18!

where Re denotes the real part. This expression for the
namic structure factor is exact within the Boltzmann a
proximation, but the explicit analytical inversion of theb3b
matrix in Eq. ~3.18! cannot be performed in all generality
However perturbation methods can be used to comp
analytically Sred(k,v) in the hydrodynamic limit:uku→0
and v;O(uku), O(uku2) ~Sec. IV!. Beyond the long-
wavelength–long-time domain, one has recourse to num
cal evaluation of Eq.~3.18! to compute the Boltzmann powe
spectrum~Sec. V!.

IV. HYDRODYNAMIC LIMIT

A. Hydrodynamic modes

We first notice that the linearized collision operatorV is
not symmetrical, with the consequence that its left and ri
eigenvectors are not each other’s transpose. However, w
the detailed balance condition is satisfied, the matrix prod
V i j k j is symmetrical@13#, and the left and right eigenvector
of V are related byuf& i5k i^fu i ; it can also be shown tha
to each of theN collisional invariants corresponds an eige
vector ^Anu(n51, . . . ,N) of V, with zero eigenvalue. The
components are given by the conserved quantities carrie
each channeli :

red mass: ^Ru i51 , if i 51, . . . ,b;

^Ru i50 , if i 5b11, . . . ,2b,

blue mass: ^Bu i50, if i 51, . . . ,b;
~4.1!

^Bu i51, if i 5b11, . . . ,2b,

x momentum: ^Pxu i5ci•1x ,

y momentum: ^Pyu i5ci•1y .

From these considerations and by analogy with thethermal
scalar product introduced in Ref.@8#, we define thecolored
scalar product
y-
-

te

ri-

t
en
ct

by

^AuB&5(
i 51

b

A~ci !k iB~ci !, ~4.2!

where the weightk i depends on density and concentratio
SinceV i j k j is a symmetrical matrix, the colored scalar pro
uct has the symmetry

^AuVuB&5^BuVuA&5(
i 51

2b

(
j 51

2b

A~ci !V i j k jB~cj !. ~4.3!

Following a method introduced by Re´sibois and de
Leener@14#, we consider, as the starting point, the propag
tor ~3.16! which is thetth power of the nonsymmetrical ma
trix e2 ik•c

•(d1V), and we use the eigenvalue problem fo
mulations

e2 ik•c
•~d1V!ucm~k!&5ezm~k!ucm~k!&, ~4.4!

^fm~k!ue2 ik•c
•~d1V!5ezm~k!^fm~k!u. ~4.5!

The eigenmodes of the propagator may be separated into
groups: the slow modes, corresponding to eigenvalueszm(k)
close to zero whenk(5uku) tends to zero; and the fast mode
corresponding to eigenvalues Rezm(k),0 leading to expo-
nentially fast decay. The latter are the kinetic modes;
slow modes which decay infinitely slowly whenk→0 will
be identified as the hydrodynamic modes. They are the do
nant modes in the hydrodynamic regime where the kine
modes can be neglected.

For uku50 the matrixe2 ik•c
•(d1V) reduces tod1V,

whose eigenspace spanned by the eigenvectors~4.1! has the
dimension given by the number of collisional invarian
~here 4!. For ukuÞ0 but small, we can express the eigenve
tors of e2 ik•c

•(d1V) as a linear combination of the colli
sional invariants, and we can expande2 ik•c, ucm(k)&,
^fm(k)u, andzm(k), respectively, as

e2 ik•c5d2~ ik !c
l
1

1

2
~ ik !2c

l

22•••,

ucm~k!&5ucm
~0!&u1~ ik !ucm

~1!&1~ ik !2ucm
~2!&1•••,

~4.6!

^fm~k!u5^fm
~0!u1~ ik !^fm

~1!u1~ ik !2^fm
~2!u1•••,

zm~k!5~ ik !zm
~1!1~ ik !2zm

~2!1•••,

with cl ,i j 5d i j cl ,i ; i , j 51, . . . ,2b, wherecl ,i denotes the
projection ofci onto k. Substitution of the first and secon
expressions of Eqs.~4.6! into Eq. ~4.4!, and identification of
the successive powers ofk, yields the hierarchy

O~k0!: Vucm
~0!&50, ~4.7!

O~k1!: Vucm
~1!&5~c

l
1zm

~1!d!ucm
~0!&, ~4.8!

O~k2!: Vucm
~2!&5~c

l
1zm

~2!d!ucm
~1!&

1@zm
~2!d1 1

2 ~c
l
1zm

~1!d!2#ucm
~0!&.

~4.9!
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The solution to zeroth order is straightforward; one has

ucm
~0!&5 (

n51

N

bnuAn&, ~4.10!

where the coefficientsbn are to be determined subsequent
The first-order solution is obtained by taking the sca

product of ^Amu with Eq. ~4.8!, where the previous orde
solution is substituted; the result has the form as
N-dimensional eigenvalue problem:

(
n51

N

^Amu~c
l
1zm

~1!d!uAn&bn ,50, ~4.11!

which yields the four eigenvectorsucm
(0)& and eigenvalues

zm
(1)

shear mode: uc'
~0!&5uP'&, z'

~1!50,

acoustic modes: uc 1
~0!&5uP

l
&2csuM &, z 1

~1!51cs ,
~4.12!

uc
2

~0!&5uP
l
&1csuM &, z

2

~1!52cs ,

color diffusion mode: uc diff
~0! &5kbuR&2k r uB&, z diff

~1! 50.

Here uM & is the sum ofuR& and uB&, P
l

and P' are the

projections of the momentum ontok and perpendicular tok,
respectively;k j5 f j (12 f j ), with j 51, . . . ,b for k r and
j 5b11, . . . ,2b for kb ; and cs5(^P

l
uP

l
&/^M uM &)1/2 will

be identified as the speed of sound~herecs5A3/7).
We define the currentsu j m& as

u j m&5~c
l
1zm

~1!d!ucm
~0!&, ~4.13!

and we note, by multiplication of Eq.~4.8! by ^cnu(0), that
the currents are orthogonal to^cn

(0)u. As a consequence, th
currents do not belong to theV kernel, and we may write the
formal solution to the first-order equation~4.8! as

ucm
~1!&5

1

V
u j m&1 (

n51

N

bmnucn
~0!&. ~4.14!

The coefficientsbmn are determined by substitutingucm
(1)& by

Eq. ~4.14! in the second-order equation~4.9!, and multiply-
ing the result bŷ cn

(0)u (nÞm) to obtain

bmn^cn
~0!ucn

~0!&~zm
~1!2zn

~1!!52^ j nu
1

V
1

d

2
u j m&.

~4.15!

The expression forzm
(2) follows from the evaluation of the

product of Eq.~4.9! with ^cm
(0)u, which yields

zm
~2!5

^ j muS 1

V
1

d

2D u j m&

^cm
~0!ucm

~0!&
. ~4.16!

We anticipate thatz
l

(2) is the kinematic viscosity (n), that

z 1
(2)5z

2

(2) is the sound damping (G), and thatz diff
(2) is the
.
r

n

color diffusivity (D), as will be justified subsequently by th
analysis of the power spectrum.

Explicit evaluation of Eq.~4.15! shows that the only non
zero off-diagonal elements of the matrix formed by thebmn’s
are the two coefficients

b1,252b2,15
G

2cs
. ~4.17!

The diagonal elementsbmm remain unknown, but this is un
important because, as will be seen, they do not contribut
the power spectrum~Sec. V!.

We have now identified the four hydrodynamic modes
the LGA. The shear mode and the acoustic modes are in
pendent of color-related properties, and the modeuc diff& de-
scribes color diffusion only. As will be shown below, th
density power spectrum reflects this property. Notice that
purely diffusive behavior of color is related to an observa
~defined below! which is neither the concentration of one
the components nor the difference between the two conc
trations@3,4#.

B. Dynamic structure factor

Transposing Eq.~4.5!, which defines the left eigenvector
of e2 ik•c

•(d1V), and multiplying the result bye2 ik•c on the
left, we find that^fmu and ucm& are related by

ufm~k!&5
1

mm
e1 ik•cucm~k!&, ~4.18!

where mm is a normalization constant. If the eigenvecto
^fmu and ucm& form a complete biorthonormal set, i.e.,

(
m51

2b

ucm~k!&^fm~k!u5d, and ^fm~k!ucn~k!&5dmn ,

~4.19!

we may writee2 ik•c
•(d1V) as

e2 ik•c
•~d1V!5 (

m51

2b

ucm~k!&ezm~k!^fm~k!u. ~4.20!

We will use this expression to recast the spectral funct
F red(k,v) ; we first rewrite Eq.~3.18! as

F red~k,v!5(
i 51

b

(
j 51

b F 1

eiv1 ik•c2d2V
1

1

2
dG

i j

k j

5^Ru
1

eiv1 ik•c2d2V
1

1

2
duR&

5^Ru
1

eiv@e2 ik•c
•~d1V!#212d

•~d1V!21

1 1
2 duR&

5^Ru
1

eiv@e2 ik•c
•~d1V!#212d

1
1

2
duR&,

~4.21!
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where the last equality is obtained by noticing that the act
of (d1V)21 upon uR& is the identity operation, sinceuR&
belongs to the kernel ofV. Then, making use of Eq.~4.20!,
we find

F red~k,v!5 (
m51

b

^Rucm~k!&F 1

eiv2zm~k!21
1

1

2G ^fm~k!uR&

5 (
m51

b

NmDm ,

with

Nm5^Rucm~k!&^fm~k!uR& and Dm5
1

eiv2zm~k!21
1

1

2
.

~4.22!

We observe that each modem contributes a spectral line
whose amplitude depends onDm . This factor becomes larg
for ( iv2zm)→0, that is, for smallzm in the limit of smallv.
The modes for whichzm(k) tends to zero at long wavelengt
are precisely the slow modes identified in Eq.~4.12!. So we
may approximate Eq.~4.22! by neglecting the fast kinetic
modes in the sum overm. It is then consistent to make use

the approximation (ex21)211 1
2 'x211O(x) for x!1 in

the evaluation ofDm ; with Eq. ~4.6!, we obtain

Dm5
1

iv2@ ikzm
~1!1~ ik !2zm

~2!#
@11O~k2!#. ~4.23!

The final step is the evaluation ofNm in terms of thek
expansion of̂ fmu and ucm&; this is accomplished by ex
pressing^fm

(p)u in terms of ucm
(q)&, using Eq.~4.6! in Eq.

~4.18!, expandingmm in powers ofk, and identifying the
successive orders. To ordersO(k0) andO(k1), respectively,
we find

^fm
~0!u5

1

^cm
~0!ucm

~0!&
^cm

~0!u, ~4.24!

^fm
~1!u5

1

^cm
~0!ucm

~0!&
^cm

~0!uc
l
1^cm

~1!u ~4.25!

2
1

^cm
~0!ucm

~0!&2
~^cm

~0!uc
l
ucm

~0!&

12^cm
~0!ucm

~1!& !^cm
~0!u, ~4.26!

whose results are inserted into Eq.~4.22! to yield

Nm5
^Rucm

~0!&2

^cm
~0!ucm

~0!&
S 112 ik

^Rucm
~1!&

^Rucm
~0!&

22 ik
^cm

~0!ucm
~1!&

^cm
~0!ucm

~0!&

1 ik
^Ruc

l
ucm

~0!&

^Rucm
~0!&

2 ik
^cm

~0!uc
l
ucm

~0!&

^cm
~0!ucm

~0!&
1••• D .

~4.27!
nWe now discuss the evaluation ofNm for each hydrodynamic
mode separately.

~i! m5'. As the vectorŝ Ru and uc'
(0)& are orthogonal,

N'50, and the shear mode will not show up in the dens
fluctuations power spectrum.

~ii ! m56. To orderO(k0), N65b/2k r
2/(k r1kb). The

computation of the next order requires, in principle, co
plete knowledge ofucm

(1)&, but in fact this is unnecessar
because the terms including the unknownbmm cancel each
other; thus we obtain N65(b/2)k r

2/(k r1kb)
@17 ikG/(2cs)#1•••!.

~iii ! m5diff. To order O(k0), N diff5bk rkb /(k r1kb).
The contributions to orderO(k1) all vanish identically; so
the expression toO(k0) is correct up to corrections o
O(k2).

CombiningNm with the explicit expression ofDm @using
Eqs. ~4.12!, ~4.13!, and ~4.16! in Eq. ~4.23!#, we obtain
F red(k,v), and therefrom the analytical expression of t
dynamic structure factor which reads

r redSred~k,v!5b
k r

2

k r1kb
(
6

S Gk2

~v6csk!21~Gk2!2

1
Gk

cs

csk6v

~v6csk!21~Gk2!2D
1b

k rkb

k r1kb

2Dk2

v21~Dk2!2
. ~4.28!

At a fixed value ofk, the spectrum consists of a Brilloui
doublet centered around6kcs , and of a central peak char
acterizing color diffusion. To first order ink, Im(zm) yields
the frequency shift of the spectral peak corresponding to
propagating modes (m56), and, to second order ink,
Re@zm(k)# yields the dissipation coefficients which dete
mine the linewidths of the spectral components. Note t
Eqs.~4.28! and~3.11! yield *2`

1`dvSred(k,v)/2pSred(k)51;
the spectra shown in the figures are normalized accordin

Considering the fluctuations

drdiff~r ,t !5rdiff~r ,t !2^rdiff~r ,t !& ~4.29!

of the observablerdiff defined as

rdiff5
kb

k r1kb
r red2

k r

k r1kb
rblue, ~4.30!

the corresponding spectral density

rdiffS
diff~k,v!5 (

rPL
(

t52`

`

e2 ivt2 ik•r

3^drdiff~r ,t !drdiff~0,0!& ~4.31!

can be computed straightforwardly along the lines of
evaluation of the power spectrumSred(k,v); sinceuc diff

(0) & is
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orthogonal to the other eigenvectors, there is no coup
with the other modes, and the dynamic structure factor
single Lorentzian,

rdiffS
diff~k,v!5b

k rkb

k r1kb

2Dk2

v21~Dk2!2
, ~4.32!

with similar normalization as forSred(k,v). The power spec-
trum ~4.32! characterizes color diffusion alone, a featu
which will be used in the analysis of the simulation data
the Sec. V.

V. POWER SPECTRUM

The above results obtained in the hydrodynamic limit
in accordance with the Landau-Placzek theory for conti
ous fluids@7#. Now the hydrodynamic theory breaks down
short wavelengths, but the Boltzmann theory should rem
valid down to k values where the kinetic domain start
Lattice-gas automata are appropriate model systems to in
tigate quantitatively the various regimes covering a w
range of wavelengths. In order to characterize the wa
length domain of the various regimes, we consider the qu
tities kl f , where l f(;1/r) is the mean free path, an
f 5r/rmax, the reduced density~or the average density pe

FIG. 1. Eigenvalue spectrum of the 14-bit model propaga
Boltzmann computation~full lines! and hydrodynamic limit~dashed
lines!. The reduced density and concentration aref 50.15 and
u red530%, respectively. The wave numberk5uku is given in recip-
rocal lattice units.
g
a

e
-

t
in

s-
e
e-
n-

channel!. Accordingly the hydrodynamic regime is define
by kl f!1, the generalized hydrodynamic regime~Boltz-
mann regime! by kl f,1, and the kinetic regime bykl f*1.

We now discuss the power spectra obtained from auto
ton simulation data, and compare the results to the analy
Landau-Placzek expressions and to the predictions of the
tice Boltzmann theory. For the latter, we use the eigenva
spectrum of the propagatorG, which can be evaluated nu
merically over the completek domain, so extending the com
putation of the power spectrum to the region ofk values
where analytical evaluation can no longer be performed
Fig. 1 we show a typical eigenvalue spectrum as compu
numerically, where the 14 modes of the 14-bit model d
scribed in Sec. II can be distinguished.

The numerical experiments are performed using a co
FHP-3 lattice gas~see Sec. II! at equilibrium. The lattice size
is 256 3 256 nodes, and the simulation duration is 40 0
time steps. Spatial Fourier transforms are computed at e
time step, and time Fourier transforms are taken over in
vals of 16 384 time steps shifted by 20 time steps for av
aging; data shown in the figures are smoothed by low-p
frequency filtering.

In Fig. 1~a!, we observe that in the range 0,k,0.4, cor-
responding to wavelengthsl.15l 0 ~with l 0 the lattice unit
length!, the four slow modes are well separated from t
kinetic modes, and their behavior is correctly given by t

r:

FIG. 2. Power spectra of red density fluctuations~a! and ofrdiff

fluctuations~b! at low density and smallk. Comparison of experi-
mental data~full lines! with theoretical predictions: the Boltzman
results and the Landau-Placzek spectra coincide~dashed lines!.
Density f 50.15. Concentration u red530%. Wave number
uku50.098 reciprocal-lattice units.v is given in reciprocal time
units (2p/T, whereT is total number of time steps!. The spectral
functions are given in reciprocalv units.
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hydrodynamic expressions. We therefore expect that, in
domain, the Landau-Placzek theory should provide a cor
description of the dynamic structure factor. This is inde
confirmed by the comparison between the results obta
from simulation data and the theoretical predictions
shown in Fig. 2, where we also notice that the Land
Placzek spectrum is indistinguishable from the Boltzma
spectrum.

The diffusion coefficientD( f ,u) is obtained straightfor-
wardly from the diffusive mode power spectrum:Sdiff(k,v)
is a single Lorentzian~4.32! with a half-widthDv5Dk2; so
plotting Dv as a function ofk2 @see Fig. 3~a!# yields, by
least-squares fit, a slope whose value provides an experim
tal measure ofD. In Fig. 3~b!, we show the diffusion coef-
ficient as a function of density: we observe that the ex
Boltzmann result@15# is in good agreement with the lattice
gas simulation data up tof '0.25; for largerf the theoretical
prediction deviates progressively from the measured val
indicating that the molecular chaos assumption becomes
valid at high densities.

As k increases from 0.4 to 1.4, there is still a distinct sc
separation between slow and fast modes~see Fig. 1!, but the
eigenvalues of the slow modes depart significantly from
hydrodynamic prediction, indicating the breakdown of t
local response hypothesis: the transport coefficients bec

FIG. 3. Spectral measurement of the diffusion coefficients:~a!
Dv5Dk2, f 50.3, andu red530% ~open squares! and 50%~black
dots!; the least-squares fits~solid line! coincide.~b! D5D( f ,u red),
simulation data~black dots!, and Boltzmann prediction~solid
curve!; the size of the black dots corresponds to the largest error
(uDD/Du<2%).
is
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k dependent. As a result, the Landau-Placzek theory
longer describes the power spectrum correctly—for instan
there is a noticable spectral line broadening inSdiff(k,v) @see
Fig. 4~a!#—but the complete Boltzmann spectrum is in go
agreement with the simulation results, as seen in Figs.~a!
and 4~b!. We have also observed that even at a rather s
wavelength (l;10l 0) the experimental data can still be a
proximated with a Landau-Placzek spectral function if t
transport coefficients are parametrized, showing that a hy
dynamic type description holds qualitatively down to qu
short wavelengths. Fork.1.5, all modes exhibit comparabl
decay rates@see Fig. 1~a!#, and all modes with even parity in
c' contribute significantly to the power spectrum. In th
domain, the Landau-Placzek theory is invalid, and
Boltzmann computation provides good agreement with
experimental spectrum~down tol'4l 0), as shown in Fig.
4~b!.

From the agreement between the experimental data
the Boltzmann results, we found that the Boltzmann the
remains valid up to reduced densities off '0.25. At higher
densities the discrepancy between the Boltzmann spe
density and the experimental power spectrum@see Fig. 5~a!#
reflects the failure of the Boltzmann theory to evaluate c
rectly the transport coefficients. Here the contributions
‘‘ring collisions’’ @16# should be included in the evaluatio
of the diffusion coefficient. Finally we note that atveryhigh

ar

FIG. 4. Power spectra at low density and highk: uku50.49 ~a!,
i.e., l'12l 0; and uku51.57 ~b!, i.e., l'4l 0. Experimental data
~full lines!, Boltzmann spectrum~dashed lines!, and Landau-
Placzek theory~dotted line!. f 50.15;u red530%.
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6338 56DAVID HANON AND JEAN PIERRE BOON
densities (f 50.9), we observe a slight coupling between t
color diffusion mode and the sound propagation modes
illustrated in Fig. 5~b!; so far we have no theoretical analys
of this effect.

We close this section with some comments on the sp
ous invariants which have been known to plague lattice-
automata with spurious conservation laws@17#. The present
model is not free of this ‘‘contamination:’’ Figure 6~a! shows
clearly that Re@z'(k)#→0 ~i.e., uez'(k)u→1) as k→2p
~which corresponds to a wavelength of one lattice unit!, de-
noting a mode which persists once it is excited. The co
sponding spurious invariance can be interpreted as the
servation of total transverse momentum on even and
lines of the lattice every two time steps„Im@z'(k)#→p, and
therefore ez'(k)→21…. Consequently, it is important to
choose initial conditions such that the total transverse m
mentum on odd and even lines be both rigorously zero. T
may easily be realized by implementing the particles p
wise with opposite velocities on the same node. Without t
precaution, the power spectrum may exhibit spurious effe
as illustrated in Fig. 6~b!. The full line shows the correc
spectrum. Now if we denote the reference direction byx, and
measure the spectrum withk oriented along they direction
~orthogonal to thex axis!, we obtain the spectrum repre
sented by the dotted line in Fig. 6~b!: the speed of sound i
not effected, but the linewidth of the shifted peaks is inc

FIG. 5. Spectra at high density:f 50.5 ~a! and f 50.9 ~b!. Ex-
perimental data~full lines! and Boltzmann prediction~dashed line!.
Concentrationu red530%. Wave numberuku50.098.
s

i-
s

-
n-
d

-
is
-

is
s,

-

rect, and the diffusive mode is propagative, despite the
that the spectrum is measured in the long-wavelength
main (l'64l 0). With k oriented at an angle of 30° off th
x axis, we observe@see the dot-dashed spectrum in Fig. 6~b!#
that there is a significant shift in the speed of sound, that
diffusive mode is practically absent, and that the kine
modes which couple to the transverse momentum invade
spectrum.

VI. COMMENTS

We have presented a two-species nonthermal lattice
automaton for which we have developed the lattice Bo
mann theory and performed automaton simulations. The
phasis is on the fluctuation correlations in order to obtai
microscopic analysis of diffusion dynamics, in contrast
earlier studies based on macroscopic approaches. On
space and time scales, we find spectral features of the
namic structure factor in accordance with those of real flu
described by the Landau-Placzek theory. Because of the
trinsic simplicity of the lattice-gas model, the various wav

FIG. 6. Effect of spurious invariant.~a! Boltzmann propagator
eigenvalues~full lines! with spurious invariant~dashed line!. ~b!
shows the results of two simulations: the spectrum plotted as a
line is obtained with initial conditions for which the oscillatin
transverse mode is not excited; the two other power spectra
obtained for twok’s with different orientations using ‘‘incorrect’’
initial conditions ~see text!. Density f 50.10. Concentration
u red550%. Wave numberuku50.098.
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length regimes can be easily identified, and the propag
spectrum can be used to to compute the power spectrum
the full wave-number domain, and to test the validity of t
Boltzmann hypothesis. The present study based on
analysis of spontaneous fluctuations offers a microscopic
proach to diffusion, and, through the identification of
purely diffusive mode associated to color transport, comp
ments and supports earlier macroscopic investigations.
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