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Diffusion and correlations in lattice-gas automata
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We present an analysis of diffusion in terms of the spontaneous density fluctuations in a nonthermal
two-species fluid modeled by a lattice-gas automaton. The power spectrum of the density-correlation function
is computed with statistical-mechanical methods, analytically in the hydrodynamic limit, and numerically from
a Boltzmann expression for shorter time and space scales. In particular, we define an observable—the weighted
difference of the species densities—whose fluctuation correlations yield the diffusive mode independently of
the other modes, so that the corresponding power spectrum provides a measure of diffusion dynamics solely.
Automaton simulations are performed to obtain measurements of the spectral density over the complete range
of wavelengthgfrom the microscopic scale to the macroscopic scale of the automaton univ@oseparison
of the theoretical results with the numerical experiments data yields the following re@ultee spectral
functions of the lattice-gas fluctuations are in accordance with those of a classical “nonthermalfifjuide
Landau-Placzek theory, obtained as the hydrodynamic limit of the Boltzmann theory, describes the spectra
correctly in the long wavelength limit; an@i) at shorter wavelengths and at moderate densities the complete
Boltzmann theory provides good agreement with the simulation data. These results offer convincing validation
of lattice-gas automata as a microscopic approach to diffusion phenomena in fluid systems.
[S1063-651%97)05811-X

PACS numbegps): 05.20.Dd, 05.50tq, 05.60+w

I. INTRODUCTION the same characteristics as those obtained from neutron- and
light-scattering experiments in real fluids. In particular, in
Frisch, Hasslacher, and PomedBEHP) pioneered a the hydrodynamic limit, one observes two shifted Brillouin
lattice-gas automaton as a microscopic model for incompeaks(corresponding to the propagation of sound waves and
pressible fluids obeying the Navier-Stokes equation in twaheir damping and a central Rayleigh pedkorresponding
dimensiong1]. The FHP model was subsequently general-to the diffusivity of entropy fluctuations as a consequence of
ized to study diffusive phenomena in binary fluids usingenergy conservation The GBL model was subsequently
“macroscopic” experiment§2—4]. Typically the observer analyzed in detail by Grosfilet al. [8].
would be interested in the evolution of the density profile of  The mixture of two real fluids exhibits a power spectrum
“red” particles in a system composed of red and “blue” jn which the central peak is not a simple Lorentzian, even in
particles, where the color is a passive property used to dishe |ong-wavelength limif7]. It has a spectral structure
tinguish species which otherwise do not differ from one anyyhere it is difficult to separate the contributions from en-
other(it is necessary that they do in other circumstan&s oy fluctuations and from concentration fluctuations which
The_ diffusion COt_aff|C|ent IS then_ evaluated by f't_“”g the €X= are not decoupled in generalnless one of the two compo-
perimental” profile to the solution of the diffusion equation nents is in trace amounts, in which case the two modes can

subject to the appropnatt_a boundary COﬂdIt!@ﬁSl]. be identified as they produce two independent central
Because the FHP lattice gas lacks an independent coll orentzians

sional invariant for energyi, it is not suited for modeling ther- . . .
9y 9 From the above considerations the idea emerged to ana-

mal fluids. An appropriate generalization was realized by th . . :
construction of the model proposed by Grosfils, Boon, anﬁyze and measure the fluctuation correlations in a nonthermal

Lallemand (GBL) [6]. Their study was motivated by the two-species LGA fluid(in .whi(':h the Ray'leigh peak is'ab-
analysis of the correlations of spontaneous fluctuations i§€M in order to study diffusion dynamics from a micro-
lattice-gas automatd GA) in order to find whether the fluc- SCOPIC approach. In Sec. Il we present the model used for our
tuations power Spectrum W0u|d be in accordance W|th thoseumerical simulations. Section Il discusses the lattice Bolt-
observed in actual fluids. Indeed the dynamical structur@mann theory for the analysis of the dynamical structure fac-
factor—the power spectrum of the density fluctuations cortor. The analytical results are developed in the hydrodynamic
relation function—gains its importance by providing insight limit in Sec. IV, and are found to be in full agreement with
to the dynamical behavior of the fluj@], and the LGA was the Landau-Placzek theory. In Sec. V we examine the dif-
found to exhibit correct properties at global equilibrium: the ferent wavelength domains in terms of the Boltzmann propa-
spectra obtained by simulations of the GBL model presengator eigenvalues, and we present qualitative and quantita-
tive analyses of the theoretical results in comparison with the
simulation data. The FHP spurious invariant is identified,
*Electronic addresses: david.hanon@ulb.ac.be and its effects are shown to be unimportant when the LGA is
"Electronic address: jpboon@ulb.ac.be properly implemented. We conclude with some comments.
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Il. MODEL * ) )
predSred(k’w):z E eflwtf|k-rGred(r,|t|) (35)
rel t=—ow

The particles have unitary mass with no spatial extension,
and occupy the nodes of a triangular lattice with hexagonal
symmetry. A particle can move along any of the six lattice 1 _
directions(with unit velocity modulusto one of the nearest =y > el spdk, |t]) 5p™ (k,0)), (3.6
sites or be at rest in its initial stafwith zero velocity modu- =
lus). Particles interact via instantaneous local collision
which redistribute mass and momentum among the channels $ored(r ), and V is the total number of nodes, also inter-

of each node at every time step according to mass and m reted as the volume of the lattice unive(kere the latticeC

mentum conservation. In a two-species system, particles af finite and has periodic boundary Cond|t|§nnS’ed(k ) is

tagged either as red or blue, and their color is redistribute
randomly during the collisions independently of the mas Iso expressed in terms of the kinetic propaggBgrdefined

redistribution; color is also conserved by the dynamics. The y

state of a node is given in terms of channel occupations. Here ik, kj=(oni(k,t)on* (k,0)), i,j=1,...h,

we use a description assigning a color to the channel. Since (3.7)
there are seven distinct velocities and two col@se for

each specigs each node has seven pairs of channels. Awhere dn;(k,t) is the spatial Fourier transform &n;(r,t),
exclusion principle is applied such that a pair of channelsand «;=f;(1—f;). Using Eq.(3.7), we write the dynamic
cannot be occupied by more than one partiglither red or  structure facto(3.5) as

blue) at any given timg9]. A corollary is that the equilib- . b b

rium distribution takes the form of a Fermi-Dirac distribution o

[10]. The present formulation yields a convenient specifica- P k,w)= 2 e tz Z ij(KDkj, (3.8
tion of the state of a node as a 14-bit word.

here 5p™qk,t) is the spatial Fourier transform of

and the static structure fact¢the Fourier transform of the
ll. BOLTZMANN FORMALISM equal-time van Hove functigras

b b
2 Z Ij(k O)KJ (3.9

=1 J=

The red mass density®{r,t) is the number of red par-
ticles at node at timet, and the fluctuationsp™{r,t) are p"e’s®q k)
defined in terms of the red channel occupations
(ie{l,... b}, with 2b the total number of channels per

b b b
node, ZZ Z 2 Kj

=

b b (3.10
8p™r,0)=2, dm(r,H=2 [m(r,0—(mi(r,0)],
= = or
(3.2
_ N S*k)=1-fe. (3.11
where() denotes the equilibrium ensemble average; in basic
equilibrium We now evaluate the kinetic propagator in the Boltz-
mann approximatiorill]. The lattice gas equation for the
(ni(r,1)) single-particle distribution f(r,t) reads[12]
E.I:i fi(r-I—Ci,t+l)=fi(r,t)+A({nj}). (312
fo for i=1,...b (redchannels HereA({n;}) is the collision term, which is expanded around
f(l— 9) for |=b+1, ....D (blue channels the stationary equilibrium distributiofn;) to yield
(3.2 2b
with f the average density per pair of channels, a@nthe A({<ni>+5ni}):;1 Qijénj_l'% O(én;jony),
concentration of red particles. Note that (3.13
2b where we have used the propery{(n;)})=0 which fol-

21 (ni(r,1))=bfe+bf(1—6)=p™+p"*=p, (33  lows from mass conservation. The explicit form @f; is
. given in terms of the transition matriR(s—s’) between
which defines the respective average densities per node. pre- and post-collisional statesands’, respectively,
The “red mass” dynamic structure fact@®{k,»), de- b S(1 1-5,
fined as the space and time Fourier transform of the van -3 L T (ML Ny
Qj; A(s—s')(s s)s,l_[
Hove correlation function (5.5} k=1 (nj){1—n;)
(3.19

G"™Yr,t)=(5p"qr,t)5p™40,0), (3.9
This result is obtained with the assumption that particles on
is given by different channels of the same node are uncorrelated before
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collision (Boltzmann ansajzi.e., by factorizing the averages b

(nin;) (i#]). Combining Eqgs(3.12 and(3.13), we obtain <A|B):E A(c)kB(c), 4.2
the linearized Boltzmann equation, which readsk ispace, =1

2b where the weightc; depends on density and concentration.
oni(k,t+1)= E e*ik-ci((sij +Q;5)0n;(k,t). (3.15 Since(};; ; is a symmetrical matrix, the colored scalar prod-
i=1 uct has the symmetry

Equation(3.15 is straightforwardly solved by iteration; in- 2b 2b
serting its solution into Eq(3.7), yields (AlQ[BY=(B|Q|AY=> > A(C)Qj«;B(c). (4.3
=1i=1

Ti(k,Hxi=[e ™ (6+Q)] x; (t=0). (3.1 ,
itk =1 ( iy (t20).(3.18 Following a method introduced by ‘Bikois and de

Here[e*‘k'c]”: 5j|e*ik'cj is a diagonal matrix. From Egs. Leener[14], we consider, as the starting point, the propaga-

(3.8) and (3.16) we obtain tor (3.16 which is thetth power of the nonsymmetrical ma-
trix e 'k°C. (8+Q), and we use the eigenvalue problem for-
p"e9Sek, w)=2ReF"*Y Kk, w), (3.17  mulations

1 1 e K (6+ )|y, (k))=exWy, (k), (4.9

dotikc_ 510 51 i

i (puk)|ekC (5+Q)=e%M(p,(K)]. (4.5

(3.18

The eigenmodes of the propagator may be separated into two
where Re denotes the real part. This expression for the dyyroups: the slow modes, corresponding to eigenvatyes)
namic structure factor is exact within the Boltzmann ap-cjose to zero wheR(=|k|) tends to zero; and the fast modes
proximation, but the explicit analytical inversion of the b corresponding to eigenvalues ¢k) <0 leading to expo-
matrix in Eqg.(3.18 cannot be performed in all generality. nentially fast decay. The latter are the kinetic modes; the
However perturbation methods can be used to computgiow modes which decay infinitely slowly whéa—0 will
analytically S®*{k,w) in the hydrodynamic limit:k| =0  pe identified as the hydrodynamic modes. They are the domi-
and »~O(|k|]), O(|k|]*) (Sec. V). Beyond the long- nant modes in the hydrodynamic regime where the kinetic
wavelength—long-time domain, one has recourse to numerimodes can be neglected.

cal evaluation of Eq(3.18 to compute the Boltzmann power  For |k|=0 the matrixe™™°. (6+ Q) reduces tos+ Q,

b b
Fred(k,w):izl jgl {

spectrum(Sec. ). whose eigenspace spanned by the eigenvetdots has the
dimension given by the number of collisional invariants
IV. HYDRODYNAMIC LIMIT (here 4. For |k|#0 but small, we can express the eigenvec-

tors of e 'X'¢.(6+ Q) as a linear combination of the colli-

sional invariants, and we can expara '*°, |4,.(K)),
We first notice that the linearized collision operaferis (¢ (k)|, andz,(k), respectively, as

not symmetrical, with the consequence that its left and right

A. Hydrodynamic modes

eigenvectors are not each other’s transpose. However, when ke i 1.,
the detailed balance condition is satisfied, the matrix product e "t =o-(ik)c + 5 (ik) e,
Qj; «; is symmetrica[13], and the left and right eigenvectors
of Q are related by¢); = «;(¢|; ; it can also be shown that KOS = [ 4OV + (KOl DY+ (1K) 2 Py + - .
to each of theN collisional invariants corresponds an eigen- [0 =10+ Ol + 0% w7 ' (4.6)
vector (Ay|(n=1, ... N) of Q, with zero eigenvalue. The — (O 4 Do (120 (D] 4
components are given by the conserved quantities carried by <¢“(k)| <¢“ |+('k)<¢/‘ |+ (ik) <¢“ REER
each channdl: zﬂ(k):(ik)zf)+(ik)22f>+ .
red mass: (R|i=1, if i=1,...b;
with ¢, ;;=&;;c,i; 1,j=1,...,D, wherec,; denotes the
(Rj=0, if i=b+1,...,D, projection ofc; onto k. Substitution of the first and second
expressions of Eq$4.6) into Eq. (4.4), and identification of
blue mass: (B|;=0, if i=1,...pb; @1 the successive powers kf yields the hierarchy
4.1
(Bl;=1, if i=b+1,...,D, O(k%:  Qlyi)=0, 4.7
x momentum: (P,i=¢-1,, O(kh): ﬂ|¢£¢1)>=(0/+ z )|y, (4.9
y momentum: (P,|i=c¢-1,. o(k?): Q| ‘r’ff)>:(c/+zf)5)|¢f)>
From these considerations and by analogy withttrermal +[Z§¢2)5+ z (c/+z£})5)2]|¢//f)>.

scalar product introduced in RdB], we define thecolored
scalar product (4.9
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The solution to zeroth order is straightforward; one has

N
|¢LO)>:,§1 bnlAn), (4.10

where the coefficientb,, are to be determined subsequently.
The first-order solution is obtained by taking the scalar b.

product of (A,,| with Eq. (4.8, where the previous order
solution is substituted;
N-dimensional eigenvalue problem:

N
E (Anl(c +2D8)|A)b,,=0, (4.10)

which yields the four eigenvectorg/?) and eigenvalues
(1)
7%

shear mode: [¢¥)=|P,), zY=0,
acoustic modes: [¢'9)=|P )—cdM), zY=+c,
(4.12
[y =P )+cdM), zV=—c,

color diffusion mode: |¢'%)=ku|R)— «|B), z'1=0.

Here [M) is the sum of|R) and|B), P and P, are the
projections of the momentum onkoand perpendicular tk,
respectively; x;=f;(1—f;), with j=1 b for x, and
j=b+1,...,D> for Kp; andcS (P, |P )/<M|M))1/2 will
be identifled as the speed of soufitbrec,=\/3/7).

We define the currentg ,) as

i, =(c +2 &)y,

and we note, by multiplication of Eq4.8) by (y,|(®, that
the currents are orthogonal {9”)|. As a consequence, the
currents do not belong to th@ kernel, and we may write the
formal solution to the first-order equati@i.8) as

(4.13

1 N
)= Gl + 2 bulvi”). (4.14

The coefficientd,,, are determined by substitutimgﬁ)) by
Eqg. (4.14 in the second-order equatidd.9), and multiply-

ing the result by(”)| (v+# u) to obtain
b (0)] 1 (0)\ (1) _ (L)y— _ /i i+_'
,U.V<'7[IV |l//V >(ZM Zv )_ <JV|Q 2|J,u,>
(4.15

The expression foe!?) follows from the evaluation of the
product of Eq.(4.9) with (4|, which yields

1 6\, .
2(2)_<J,u| ﬁ_l_ E |J,u> (4 16)
DY) '

We anticipate thaz®) is the kinematic viscosity ), that
Z2=27 is the sound dampingl), and thatz3), is the
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color diffusivity (D), as will be justified subsequently by the
analysis of the power spectrum.

Explicit evaluation of Eq(4.15 shows that the only non-
zero off-diagonal elements of the matrix formed by thg’s
are the two coefficients

r

—=7bs " 2¢,

(4.17

the result has the form as an

The diagonal elements, , remain unknown, but this is un-
important because, as will be seen, they do not contribute to
the power spectruniSec. V.

We have now identified the four hydrodynamic modes in
the LGA. The shear mode and the acoustic modes are inde-
pendent of color-related properties, and the mtdgi) de-
scribes color diffusion only. As will be shown below, the
density power spectrum reflects this property. Notice that the
purely diffusive behavior of color is related to an observable
(defined belowwhich is neither the concentration of one of
the components nor the difference between the two concen-
trations[3,4].

B. Dynamic structure factor
Transposing Eq(4.5), which defines the left eigenvectors
of e k¢, (8+ Q), and multiplying the result bg ¥ on the
left, we find that(¢,,| and|¢//ﬂ> are related by

+|k c| l/lﬂ(k >

M

|¢M(k)>_ (4.18

wherem, is a normalization constant. If the eigenvectors
(¢,| and|y,) form a complete biorthonormal set, i.e.,

2b
2, [9,00)(¢u(k)]=8,  and (¢, (K)[1,(k)) =,
=
(4.19
we may writee €. (6+ Q) as
2b

e e (8t @)= 3 |9 (K)en (¢, (k). (4.20
2

We will use this expression to recast the spectral function
Frdk,w) ; we first rewrite Eq(3.18 as

b b 1 1
Fred(szz 2 —e|w+|kc 5_94-55 Kj
i
1
~(Rlgrice—g g "297
~(R : 5+
eele’kC(6+Q)] -6
+20|R)
1

=(R| JaR)

Iw[e IkC(6+Q)] 1_ 5 2
(4.21
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where the last equality is obtained by noticing that the actionWe now discuss the evaluation.sf, for each hydrodynamic
of (6+Q) ! upon|R) is the identity operation, sinckR) mode separately.

belongs to the kernel 2. Then, making use of Ed4.20), (i) wu=L. As the vectorgR| and|4{?) are orthogonal,
we find N, =0, and the shear mode will not show up in the density
fluctuations power spectrum.

(i) w=+. To orderO(k®, N.=b/2k?/(k,+ k). The
computation of the next order requires, in principle, com-
plete knowledge of z,bﬁﬁ), but in fact this is unnecessary
because the terms including the unknotyp, cancel each
Ny, other; thus we  obtain N.=(b/2)x% (x,+ k)

[1FikI'/(2¢cg)]+---).
with (i) w=diff. To order O(k®), N gx=bx,kp/ (K + Kp).
The contributions to orde®(k?) all vanish identically; so
1 1 the expression tdO(k®) is correct up to corrections of
Nu= (RN, (KIR) and D,=——————+5.  O(K?).
er -1 4.22 CombiningV,, with the explicit expression ob,, [using
' Egs. (4.12, (4.13, and (4.16 in Eq. (4.23], we obtain
We observe that each moge contributes a spectral line Fred(k*‘f’)’ and therefrom the analytical expression of the
whose amplitude depends @, . This factor becomes large dynamic structure factor which reads
for (iw—2z,)—0, thatis, for smalk,, in the limit of smallw.

(¢.(K)|R)

re _Eb: ! !
F d(k,a))—ﬂzl (Rl Soio 172

b

i

The modes for whiclz, (k) tends to zero at long wavelength 2 NG
are precisely the slow modes identified in F4.12. So we pressed Kk w)=b— (
may approximate Eq(4.22) by neglecting the fast kinetic ket kb= | (0 *ck)?+(Tk?)?
modes in the sum over. It is then consistent to make use of
the approximation —1) 1+ 2~x"1+0(x) for x<1 in N Ik Csk* w
the evaluation oD, ; with Eq. (4.6), we obtain Cs (w*ck)?+(I'k?)?

_ 2 K¢ Kp 2Dk?

“ iw—[isz)+(ik)zz§f)][1+O(k N a23 T xo w2t (DKD? (4.28

The final step is the evaluation oY, in terms of thek

expansion of(¢,| and |,); this is accomplished by ex- At a fixed value ofk, the spectrum consists of a Brillouin
pressing(qﬁﬁf)l in terms of|¢21)>, using Eq.(4.6) in Eq.  doublet centered arountikcs, and of a central peak char-
(4.18, expandingm,, in powers ofk, and identifying the acterizing color diffusion. To first order ik, Im(z,) yields

successive orders. To orded$k®) andO(k?), respectively, —the frequency shift of the spectral peak corresponding to the
we find propagating modes = =*), and, to second order ik,

Rgz,(k)] yields the dissipation coefficients which deter-
mine the linewidths of the spectral components. Note that

(1= o (W, (424 Egs.(4.28 and(3.11) yield [ " dwS®Y(k,w)/27S*(k) = 1;
(W |‘/’u ) the spectra shown in the figures are normalized accordingly.
Considering the fluctuations
(o= (e, +(wl 429
g <¢LO)|¢(#0)> e . Op it (1,1) = pir (1, t) — (pair(r,t)) (4.29

1 ) ) of the observable i defined as
—W(Wfﬂ lc [4,.)
.o o Kb red_ _ Kr blue (4.30
+2<¢5LO)|I/IE})>)<¢(MO)|7 (4.26) Pdiff Kr+Kbp Kr+Kbp ) .

whose results are inserted into £4.22) to yield

the corresponding spectral density

(RIy) (Rly) () -
=———— 1+2ik B _2ijk——£ i )= —iwt—ik-r
OO T Ry oy ST ke =2 2 e
_ <R|C/|¢LO)> _ <‘/’LO)|C/|¢;O)> X 8pgiit(1,1) Opgirr(0,0)) (4.30
N 0)[ 40 B
<R|"/’# ) <% W# ) can be computed straightforwardly along the lines of the

(4.27  evaluation of the power spectrug®i(k,w); since| Q) is
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FIG. 2. Power spectra of red density fluctuatigasand of p i

fluctuations(b) at low density and smak. Comparison of experi-
FIG. 1. Eigenvalue spectrum of the 14-bit model propagator:mental datafull lines) with theoretical predictions: the Boltzmann
Boltzmann computatiotfull lines) and hydrodynamic limitdashed ~ results and the Landau-Placzek spectra coindidished linels

lines. The reduced density and concentration &re0.15 and Density f=0.15. Concentration #q=30%. Wave number

0,.4= 30%, respectively. The wave numbder |K| is given in recip- |k|=0.098 reciprocal-lattice unitsw is given in reciprocal time
rocal lattice units. units (27/T, whereT is total number of time stepsThe spectral

functions are given in reciprocal units.

orthogonal to the other eigenvectors, there is no coupling
with the other modes, and the dynamic structure factor is ghanne). Accordingly the hydrodynamic regime is defined
single Lorentzian, by k/;<1, the generalized hydrodynamic regini@oltz-
mann regimgby k/’;<1, and the kinetic regime b/ ;= 1.
We now discuss the power spectra obtained from automa-
Ky Kp 2Dk? ton simulation data, and compare the results to the analytical
K+ Ky 2+ (DK?)2’ (4.32 Landau-Placzek expressions and to the predictions of the lat-
tice Boltzmann theory. For the latter, we use the eigenvalue
spectrum of the propagatdr, which can be evaluated nu-

with similar normalization as fo8®{k, »). The power spec- Mmerically over the completie domain, so extending the com-

trum (4.32 characterizes color diffusion alone, a featurePutation of the power spectrum to the region lofvalues
which will be used in the analysis of the simulation data inWhere analytical evaluation can no longer be performed. In
the Sec. V. Fig. 1 we show a typical eigenvalue spectrum as computed

numerically, where the 14 modes of the 14-bit model de-
V. POWER SPECTRUM scribed in Sec. Il can be distinguished.
The numerical experiments are performed using a color

The above results obtained in the hydrodynamic limit areFHP-3 lattice gagsee Sec. )lat equilibrium. The lattice size
in accordance with the Landau-Placzek theory for continuis 256 X 256 nodes, and the simulation duration is 40 000
ous fluids[7]. Now the hydrodynamic theory breaks down at time steps. Spatial Fourier transforms are computed at every
short wavelengths, but the Boltzmann theory should remaitime step, and time Fourier transforms are taken over inter-
valid down to k values where the kinetic domain starts. vals of 16 384 time steps shifted by 20 time steps for aver-
Lattice-gas automata are appropriate model systems to inveaging; data shown in the figures are smoothed by low-pass
tigate quantitatively the various regimes covering a widefrequency filtering.
range of wavelengths. In order to characterize the wave- In Fig. 1(a), we observe that in the range<®< 0.4, cor-
length domain of the various regimes, we consider the quarresponding to wavelengths> 157, (with /, the lattice unit
tities k/s, where /;(~1/p) is the mean free path, and length, the four slow modes are well separated from the
f=plpmax, the reduced densitfor the average density per kinetic modes, and their behavior is correctly given by the

pairS™(K,w)=b
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FIG. 3. Spectral measurement of the diffusion coefficietds:
Aw=Dk? f=023, andfeq=30% (open squargsand 50%(black FIG. 4. Power spectra at low density and highk|=0.49 (a),
doty; the least-squares fi(solid line) coincide.(b) D=D(f,fred,  i.e., N\~12/; and |k|=1.57 (b), i.e., \~4/,,. Experimental data

simulation data(black dot3, and Boltzmann predictior(solid (full lines), Boltzmann spectrum(dashed lines and Landau-
curve); the size of the black dots corresponds to the largest error bapjaczek theorydotted ling. f=0.15; 6,e4=30%.

(|AD/D|<2%).

k dependent. As a result, the Landau-Placzek theory no
hydrodynamic expressions. We therefore expect that, in thifonger describes the power spectrum correctly—for instance,
domain, the Landau-Placzek theory should provide a correghere is a noticable spectral line broadeningifi (k, ») [see
description of the dynamic structure factor. This is indeedFig. 4(a)]—but the complete Boltzmann spectrum is in good
confirmed by the comparison between the results obtainedgreement with the simulation results, as seen in Fig®. 4
from simulation data and the theoretical predictions asand 4b). We have also observed that even at a rather short
shown in Fig. 2, where we also notice that the Landauwavelength { ~10/,) the experimental data can still be ap-
Placzek spectrum is indistinguishable from the Boltzmanrproximated with a Landau-Placzek spectral function if the
spectrum. transport coefficients are parametrized, showing that a hydro-

The diffusion coefficientD(f, #) is obtained straightfor- dynamic type description holds qualitatively down to quite
wardly from the diffusive mode power spectruff(k, w) short wavelengths. Fd> 1.5, all modes exhibit comparable
is a single Lorentzia4.32 with a half-widthAw=Dk?; so  decay rategsee Fig. 1a)], and all modes with even parity in
plotting Aw as a function ofk? [see Fig. 8a)] yields, by ¢, contribute significantly to the power spectrum. In this
least-squares fit, a slope whose value provides an experimedemain, the Landau-Placzek theory is invalid, and the
tal measure oD. In Fig. 3b), we show the diffusion coef- Boltzmann computation provides good agreement with the
ficient as a function of density: we observe that the exacexperimental spectrudown toh~4/,), as shown in Fig.
Boltzmann resulf15] is in good agreement with the lattice- 4(b).
gas simulation data up to~0.25; for largerf the theoretical From the agreement between the experimental data and
prediction deviates progressively from the measured valueshe Boltzmann results, we found that the Boltzmann theory
indicating that the molecular chaos assumption becomes irremains valid up to reduced densitiesfe$ 0.25. At higher
valid at high densities. densities the discrepancy between the Boltzmann spectral

As k increases from 0.4 to 1.4, there is still a distinct scaledensity and the experimental power spectiisee Fig. )]
separation between slow and fast mo¢ese Fig. ], but the reflects the failure of the Boltzmann theory to evaluate cor-
eigenvalues of the slow modes depart significantly from therectly the transport coefficients. Here the contributions of
hydrodynamic prediction, indicating the breakdown of the“ring collisions” [16] should be included in the evaluation
local response hypothesis: the transport coefficients becond the diffusion coefficient. Finally we note that atry high
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FIG. 5. Spectra at high density=0.5 (@) andf=0.9 (b). Ex- FIG. 6. Effect of spurious invarianta) Boltzmann propagator
perimental datdfull lines) and Boltzmann predictiofdashed ling eigenvalueg(full lines) with spurious invarianfdashed ling (b)
Concentrationd,.s= 30%. Wave numbejk|=0.098. shows the results of two simulations: the spectrum plotted as a full

. _ liah i h line is obtained with initial conditions for which the oscillating
densities {=0.9), we observe a slight coupling between t €transverse mode is not excited; the two other power spectra are

color diffusion mode and the sound propagation modes agptained for twok’s with different orientations using “incorrect”
illustrated in Fig. %b); so far we have no theoretical analysis jnitial conditions (see text Density f=0.10. Concentration
of this effect. Oreq= 50%. Wave numbefk| =0.098.

We close this section with some comments on the spuri-
ous invariants which have been known to plague lattice-gagect, and the diffusive mode is propagative, despite the fact
automata with spurious conservation la|@S]. The present that the spectrum is measured in the long-wavelength do-
model is not free of this “contamination:” Figure® shows  main (\ ~64/,). With k oriented at an angle of 30° off the
clearly that Rfz, (k)]—0 (i.e., [e2®|—-1) as k—27  x axis, we observsee the dot-dashed spectrum in Figh)$
(which corresponds to a wavelength of one lattice)unie-  that there is a significant shift in the speed of sound, that the
noting a mode which persists once it is excited. The corregiffusive mode is practically absent, and that the kinetic

sponding spurious invariance can be interpreted as the cofodes which couple to the transverse momentum invade the
servation of total transverse momentum on even and odgpectrum.

lines of the lattice every two time stefsn[ z, (k) ]— 7, and
therefore e2.(W— —1). Consequently, it is important to
choose initial conditions such that the total transverse mo-
mentum on odd and even lines be both rigorously zero. This We have presented a two-species nonthermal lattice-gas
may easily be realized by implementing the particles pairautomaton for which we have developed the lattice Boltz-
wise with opposite velocities on the same node. Without thisnann theory and performed automaton simulations. The em-
precaution, the power spectrum may exhibit spurious effectghasis is on the fluctuation correlations in order to obtain a
as illustrated in Fig. @). The full line shows the correct microscopic analysis of diffusion dynamics, in contrast to
spectrum. Now if we denote the reference directiorxpgind  earlier studies based on macroscopic approaches. On large
measure the spectrum withoriented along the direction  space and time scales, we find spectral features of the dy-
(orthogonal to thex axis), we obtain the spectrum repre- namic structure factor in accordance with those of real fluids
sented by the dotted line in Fig(l§: the speed of sound is described by the Landau-Placzek theory. Because of the in-
not effected, but the linewidth of the shifted peaks is incor-trinsic simplicity of the lattice-gas model, the various wave-

VI. COMMENTS
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